The Regulation of Catch in Molluscan Muscle
نویسنده
چکیده
Molluscan catch muscles are smooth muscles. As with mammalian smooth muscles, there is no transverse ordering of filaments or dense bodies. In contrast to mammalian smooth muscles, two size ranges of filaments are present. The thick filaments are long as well as large in diameter and contain paramyosin. The thin filaments contain actin and appear to run into and join the dense bodies. Vesicles are present which may be part of a sarcoplasmic reticulum. Neural activation of contraction in Mytilus muscle is similar to that observed in mammalian smooth muscles, and in some respects to frog striated muscle. The relaxing nerves, which reduce catch, are unique to catch muscles. 5-Hydroxytryptamine, which appears to mediate relaxation, specifically blocks catch tension but increases the ability of the muscle to fire spikes. It is speculated that Mytilus muscle actomyosin is activated by a Ca(++)-releasing mechanism, and that 5-hydroxytryptamine may reduce catch and increase excitability by influencing the rate of removal of intracellular free Ca(++).
منابع مشابه
Catch Muscle Myorod Modulates ATPase Activity of Myosin in a Phosphorylation-Dependent Way
Myorod is expressed exclusively in molluscan catch muscle and localizes on the surface of thick filaments together with twitchin and myosin. Myorod is an alternatively spliced product of the myosin heavy-chain gene that contains the C-terminal rod part of myosin and a unique N-terminal domain. The unique domain is a target for phosphorylation by gizzard smooth myosin light chain kinase (smMLCK)...
متن کاملMatching molecules in the catch mechanism.
A new structural model is advanced to account for the specialized "catch" contraction of molluscan smooth muscles. The myosin of the thick filaments of these muscles is pictured as comprising a single layer of molecules whose assembly and activity are controlled by the underlying core of paramyosin. This organization differs from that in other muscles in which the myosin is grouped into bundles...
متن کاملTwitchin from molluscan catch muscle: primary structure and relationship between site-specific phosphorylation and mechanical function.
The phosphorylation state of the myosin thick filament-associated mini-titin, twitchin, regulates catch force maintenance in molluscan smooth muscle. The full-length cDNA for twitchin from the anterior byssus retractor muscle of the mussel Mytilus was obtained using PCR and 5'rapid amplification of cDNA ends, and its derived amino acid sequence showed a large molecule ( approximately 530 kDa) w...
متن کاملUnphosphorylated twitchin forms a complex with actin and myosin that may contribute to tension maintenance in catch.
Molluscan smooth muscle can maintain tension over extended periods with little energy expenditure, a process termed catch. Catch is thought to be regulated by phosphorylation of a thick filament protein, twitchin, and involves two phosphorylation sites, D1 and D2, close to the N and C termini, respectively. This study was initiated to investigate the role of the D2 site and its phosphorylation ...
متن کاملEffect of pH on the rate of myosin head detachment in molluscan catch muscle: are myosin heads involved in the catch state?
Moderate alkalisation is known to terminate the catch state of bivalve mollusc smooth muscles such as the anterior byssus retractor muscle (ABRM) of Mytilus edulis L. In the present study, we investigated the effect of moderate alkalisation (pH 7.2-7.7 vs control pH 6.7) on the myosin head detachment rate in saponin-skinned fibre bundles of ABRM in order to investigate the possible role of myos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 50 شماره
صفحات -
تاریخ انتشار 1967